
6. Trees, Graphs, Networks
vis.stanford.edu

linkanalysisnow.com

www.ibiblio.org

champagnewhisky.com

Relationships Between Data

• Hierarchical relationships

• Interconection, continuity

• Derivation (sequence)

• Shared classification

• Similarity of values

• Similarity of attributes

www.caida.org

Visualization of Hierarchical Structures

• Hierarchical structures = trees

• Algorithms for visualization:

– Space-filling – maximal usage of screen space

– Non-space-filling

blog.revolutionanalytics.com

Space-filling Methods

• Two most common types:

– Rectangular layout

• Treemaps

– Radial layout

• Sunburst view

www.oreillynet.com

www.cc.gatech.edu

Treemap - Pseudocode

Naming:

Width = width of the rectangle

Height = height of the rectangle

Node = root node of the tree

Position = position of rectangle (e.g., [0, 0])

Orientation = orientation of the split – alternating

horizontal and vertical split

treemap(Node n, Orientation o, Position orig, Width

w, Height h)

treemap(Node n, Orientation o, Position orig, Width w,

Height h)

if n is the leaf node (has no child nodes)

draw_rectangle(orig, w, h);

return;

for each child node of the n (child_i)

get number of leaf nodes in the subtree;

sum up the total number of the leaf nodes;

compute the percentage of leaf nodes in each subtree

(percent_i);

if orientation is horizontal

for each subtree

compute the offset of the origin based on the

origin and the width (offset_i);

treemap(child_i, vertical, orig+offset_i,

w*percent_i, h);

else

for each subtree

compute the offset of the origin based on the

origin and the height (offset_i);

treemap(child_i, horizontal, orig+offset_i, w,

h*percent_i);

Radial Layout

• Sunburst displays

• Root of the hierarchy placed in the center of
the radial view, individual layers of hierarchy
represented by concentric rings

• Rings are split based on the number of nodes
at the given level

• Radial techniques display inner nodes as well
as leaves

Sunburst - Pseudocode

Naming:

Start = start angle of the node (initially 0)

End = end angle of the node (initially 360)

Origin = position of the center of the radial view

(e.g., 0, 0])

Level = current level of hierarchy (initially 0)

Width = width of each ring – based on maximal depth

of the hierarchy and the size of display

sunburst(Node n, Start st, End en, Level l)

sunburst(Node n, Start st, End en, Level l)

if n is the leaf node (has no child nodes)

draw_radial_arc(Origin, st, en, l*Width,

(l+1)*Width);

return;

for each child nod of the n (child_i)

get number of leaf nodes in the subtree;

sum up the total number of the leaf nodes;

compute the percentage of leaf nodes in each

subtree (percent_i);

for each subtree

compute the initial/end angle based on the size

of subtrees, their order and the range of

angles;

sunburst(child_i, st_i, en_i, l+1);

Color in Hierarchical Techniques

• Highlighting of many attributes, e.g.:

– Values in nodes

– Enhancement of hierarchical relationships (similar
color for parent and child nodes)

• Additional properties displayed by symbols,
marks and labels placed into rectangular or
radial segments

protempore.net

Non-Space-Filling Methods

• Node-link diagrams are the most common

• Diagrams dependent mostly on two factors:

– Degree of the nodes (number of branches, e.g.,
binary trees)

– Depth

swamitra.blogspot.com

Design of the Algorithms for
Rendering Node-Link Graphs

• Three categories of rules:
– Rendering conventions – shape and curvature of

edges, placement of the nodes into fixed grid,
neighbors at the same vertical position, …

– Restrictions – placement of the nodes at given
position, displaying nodes in close proximity,
orientation of edges, …

– Aesthetics – minimization of edge intersections,
keeping the width/height ratio of the graph,
minimization of the overall graph area, minimization
of the edge length, minimization of the edge
bending, minimization of the number of different
angles and curves, effort to keep the symmetry

Design of the Algorithms for
Rendering Trees

1. Divide the rendering area into slices of the same
height – the number of slices is derived from the
depth of the tree

2. For each level of the tree, determine how many
nodes need to be drawn

3. Divide each slice into rectangles of same size –
derived from the number of nodes at the given
level

4. Draw each node into the corresponding rectangle
5. Draw connecting line leading from the center of

the bottom edge of each node to the center of
the top edge of the its child nodes

Optimalisation

• Improve the usage of the screen space

• Examples:
– Each level divided by the number of leaf nodes in the

corresponding subtree

– Uniform layout of the leaf nodes + centering of their
parent nodes

– Adding additional gaps between neighboring nodes
that do not have common parent (i.e., are not siblings)

– Reorganization of the tree in order to improve the
symmetry and balance

– Root node at the center of the screen, child nodes
arranged radially around it

Application of Third Dimension

• For large trees, complemented by rotation,
translation and zooming

• E.g., cone trees – child nodes are uniformly
radially placed around parent node

– Primary parameters are

radius and translation

distance

www.dcc.uchile.cl

Arbitrary Graphs/Networks

• Trees are just one category of graphs –
connected unweighted acyclic graphs

• Other graph representations exist, e.g., graphs
with weighted edges, undirected graphs, cyclic
graphs, disjoint graphs, …

• We will focus on arbitrary graphs – their
structure is not known. Two different
approaches:
– Node-link diagrams

– Matrix displays

Node-Link Diagrams

• Force-directed graphs – strings between nodes

• Links between nodes are iteratively adjusted,
until the stress value is minimized

• Example:https://vega.github.io/vega/examples
/force-directed-layout/

http://www.absint.com/aisee/gallery.htm

https://vega.github.io/vega/examples/force-directed-layout/

Planar Graphs

• Edges are not intersecting
• Very popular

– Long history, many studies
– Edge intersections complicate the interpretation of

the graph, it is better to avoid them
– Sparse – according to Euler’s formula for n nodes

there are at most 3n – 6 edges

• Graphs with intersections can be transformed to
planar graphs by introduction of „dummy“ nodes
at intersection points – after transforming the
graph to planar layout, the dummy nodes are
removed

Algorithm for Detection of Planarity
of Biconnected Graph

Algorithm for Detection of Planarity
of Biconnected Graph

• If the graph still contains cycles after the
removal of the edges of the outer cycle, it
means that one or more pieces contain cycle

• Create subgraph containing this piece and the
parts of original cycle containing the
endpoints of the piece

• Recursively call the algorithm for detection of
planarity

Example

Rendering Planar Graphs

• Visibility approach – 2 steps:

– Visibility step – create a representation, where
each node is rendered as horizontal segment and
each edge as vertical line connecting
corresponding segments of the nodes

– Replacement step – each segment corresponding
to a node „shrinks“ into a point and each vertical
connector is replaced by polyline

Rendering Planar Graphs

Matrix Representation of Graphs

• Adjacency matrix = grid of NxN dimensions (N
is the number of nodes)

– Binary or containing values of forces or weights of
edges

– Overcomes the problem of edge intersections

– The strategy for organisation of rows and columns
is crucial for revealing interesting patters and
structures of the graph

Matrix Representation of Graphs

• Variety of algorithms for row and column
reorganisation

– User driven / automatic

– Finding the optimal solution is NP-complete
problem, therefore the application various
heuristics is necessary

en.wikipedia.org

Labelling

• Necessary for
understanding what the
graph represents

• When rendering trees and
graphs the labelling is
difficult, because the
graphs may contain large
amount of nodes and
labelling of edges may also
be required

labelwallpapers.blogspot.com

Labelling

• For small amount of different labels it is better to
use color, size, or shape of the node or color,
thickness and the style of the edge line

• If the number of different labels is over 5 or 6 –
use textual labels

• Small graphs – inserted directly into the node
(rectangular or oval shape of node) – size of the
nodes based on the longest text

• Unified placement of labels for edges:
– Vertical – everything left or everything right to the edge
– Horizontal – everything above or everything below the

edge

Labeling

• If the amount of different labels is too large,
showing them all at once is not effective. We
can use different strategies:

– Showing labels only in the neighbourhood of
current cursor position

– Various deformations of the visualization, so we
can dedicate the given part of the graph larger
amount of screen space

– Rotation of graph in order to reduce overlaps and
occlusions of the labels

Labelling

Labeling

• Showing random subset of labels for short
time interval and then showing different
random subset etc.

• Short-term memory of the user enables
remembering of larger amount of labels than
when using static view

Labelling

• Ladislav Čmolík, Jiří Bittner, Layout-aware optimization for interactive labelling of
3D models, Computers & Graphics, Volume 34, Issue 4, August 2010, pages 378-
387, ISSN 0097-8493

Trees, Graphs, and Interaction

• Generic types of interaction

– E.g., trailing camera, zooming

– Common for all types of visualization

• Specialized interactions

– E.g., focus + context

– Applicable for a large variety of visualizations, but
primarily developed for visualization of trees and
graphs

Interactions with Virtual Camera

• Common interactions (trailing camera, zoom,
rotation) that are considered to be simple
changes applied to the virtual camera
observing a certain part of the scene

• Operations are directed manually or
automatically (e.g., flights over the scene,
automatic rotation of 3D objects)

Interactions with Graph Elements

• Starts with selection
– We isolate a single or more graph components

• Graphs with disarranged complicated clusters can
be adjusted:
– Select a set of nodes and drag it to the less cluttered

part of the screen
– Select, translate, or change the shape of edges in

order to eliminate their intersections or increase the
aesthetical value of the graph

• Problems – in dense cluttered regions it is almost
impossible to select object unambiguously

Interactions with Graph Structure

• Two basic classes of interaction:

1. Changing the structure of the graph (e.g.,
reordering the branches of the tree)

2. Focus+context techniques, where a subset of the
structure is represented in detail and the rest of
the structure just in outline (e.g., fish eye)

• Performed in screen space

• Performed in structure space – suitable for graphs
(enlargement of one branch (see image on the next
slide), highlighting of edges adjacent to a given node, …)

Interactions with Graph Structure

Interactions with Graph Structure

• Selective hiding or removal of the selected
parts of the graph

Text and Document Visualization

giladlotan.coms

joeganley.com

vialab.science.uoit.ca

Definitions

• Corpus = set of documents

• We work with objects inside of corpus –
words, sentences, paragraphs, whole
documents, other corpora as well as images
and videos

• Texts and documents – structured, contain
attributes and metadata

• Systems for data mining from documents –
querying

Levels of Text Representation

• Three levels:

– Lexical

– Syntactic

– Semantic

• Each level requires certain conversion of
unstructured text to some form of structured
data

Lexical Level

• Transformation of string of characters into
sequence of atomic entities = tokens

• Lexical analysers process sequence of
characters with a given set of rules into new
sequence of tokens

• Tokens contain characters , n-grams, words,
lexemes, phrases, …

• Finite state automata

Syntactic Level

• Identification and annotation of function of
each token

• Assignment of marks – position of sentence,
lexical category, singular or plural, affinity of
tokens, …

Semantic Level

• Extraction of the meaning and the relationship
of the findings derived from the structures
identified in syntactic level

• Goal is to define analytic interpretation of the
whole text in the given context or independent
of the context

Vector Space Model (VSM)

• Algebraic model for representation of text
documents

• „Term vector“ = vector, in which each dimension
represent a weight of a given word in a document

• Removal of „stop words“ (the, a, …) for reduction
of noise

• Aggregation of words with the same root
• Example of term vector is a hash table which

maps unique terms to the number of their
occurrences in the document

Vector Space Model

Count-Terms(tokenStream)

1.terms := ∅; /* initialize terms

to empty hash table*/

2.for each token t in tokenStream

3. do if t is not stop word

4. do increment (or initialize

to 1) terms[t];

5.return terms;

Example

• Text example:
There is a great deal of controversy about the safety of
genetically engineered foods. Advocates of biotechnology
often say that the risks are overblown. ‘‘There have been
25,000 trials of genetically modified crops in the world,
now, and not a single incident, or anything dangerous in
these releases,’’ said a spokesman for Adventa Holdings, a
UK biotech firm. During the 2000 presidential campaign,
then-candidate George W. Bush said that ‘‘study after
study has shown no evidence of danger.’’ And Clinton
Administration Agriculture Secretary Dan Glickman said
that ‘‘test after rigorous scientific test’’ had proven the
safety of genetically engineered products.

Example

• The aforementioned paragraph contains 98
string tokens, 74 terms and 48 terms after
removal of stop words

• Example of term vector generated by the
pseudocode:

VSM – Computation of Weights

• Various methods of weight assignment, most
well known is term frequency inverse
document frequency (TfIdf)

• If Tf(w) is term frequency = number of
occurrences of a word w in a document, Df(w)
is document frequency = number of
documents, which contain word w, N is
number of documents, then TfIdf(w) is:

)(
log*)()(

wDf

N
wTfwTfIdf

VSM – Computation of Weights

• We are interested in words that are frequently
occurring in one document but are not so
common in other documents of the corpus

Zipf’s Law

• In a typical document in a natural language
the frequency of any word is inversely
proportional to its rank in the frequency table.

Visualization of Individual Documents

• Tag clouds

Visualization of Individual Documents

• WordTree – tree branches represent various
contexts in which the word from the root of
the tree occurs in the document – also
showing frequency of terms

Visualization of Individual Documents

• TextArc

Smith Williams – A History of Science

Visualization of Individual Documents

• Arc Diagrams

– visualizing repeated occurrences in text

• Bach’s minuet in G dur:

Visualization of Individual Documents

• Literature Fingerprints

Visualization of Set of Documents

• The goal is to place similar documents close to
each other and different documents far apart

• Algorithm computes the similarity between all
pairs of documents and this then drives their
placement – O(n2) complexity

Visualization of Set of Documents

• Self-Organizing Maps – machine learning
algorithm. Collection of 2D nodes, into which we
place the documents. Each node contains vector
of the same dimensionality as the input vectors of
the training documents

• At the beginning initialize the SOM nodes –
typically randomly. Select random vector,
compute its distance from the other nodes. Assign
weights to the closest nodes (within given radius)
– the closest node has the largest weight. Iterate
over input vectors while decreasing the radius.

Self-Organizing Maps

Self-Organizing Maps - Example

Visualization of Set of Documents

• Themescapes – summary information about
corpora in the form of 3D terrains

• Height and color used for representation of

density of similar

documents

www3.sympatico.ca

Extended Methods for Text Visualization

• Include also metadata:

– Software Visualization

– Search Result Visualization

– Temporal Document Collection Visualizations

– Representing Relationships

Software Visualization

Search Result Visualization

• TileBars – each document of the result set is
represented by rectangle where width indicates
relative length of the document and layered
squares inside correspond to text segments. The
darker the square the higher the frequency of the
queried set of terms

• Compact representation and information about
the structure of the document reflecting relative
length of the document, frequency of the queried
terms and their distribution

Search Result Visualization

Example

Temporal Document Collection
Visualizations

• ThemeRiver – visualization of thematic
changes in time for a set of documents,
vertical thickness corresponds to frequency in
the given time

Representing Relationships

• Jigsaw List view

